Skip to content
Kong Docs are moving soon! Our docs are migrating to a new home. You'll be automatically redirected to the new site in the future. In the meantime, check out the new site now!
Kong Logo | Kong Docs Logo
  • Docs
    • Explore the API Specs
      View all API Specs View all API Specs View all API Specs arrow image
    • Documentation
      API Specs
      Kong Gateway
      Lightweight, fast, and flexible cloud-native API gateway
      Kong Konnect
      Single platform for SaaS end-to-end connectivity
      Kong AI Gateway
      Multi-LLM AI Gateway for GenAI infrastructure
      Kong Mesh
      Enterprise service mesh based on Kuma and Envoy
      decK
      Helps manage Kong’s configuration in a declarative fashion
      Kong Ingress Controller
      Works inside a Kubernetes cluster and configures Kong to proxy traffic
      Kong Gateway Operator
      Manage your Kong deployments on Kubernetes using YAML Manifests
      Insomnia
      Collaborative API development platform
  • Plugin Hub
    • Explore the Plugin Hub
      View all plugins View all plugins View all plugins arrow image
    • Functionality View all View all arrow image
      View all plugins
      AI's icon
      AI
      Govern, secure, and control AI traffic with multi-LLM AI Gateway plugins
      Authentication's icon
      Authentication
      Protect your services with an authentication layer
      Security's icon
      Security
      Protect your services with additional security layer
      Traffic Control's icon
      Traffic Control
      Manage, throttle and restrict inbound and outbound API traffic
      Serverless's icon
      Serverless
      Invoke serverless functions in combination with other plugins
      Analytics & Monitoring's icon
      Analytics & Monitoring
      Visualize, inspect and monitor APIs and microservices traffic
      Transformations's icon
      Transformations
      Transform request and responses on the fly on Kong
      Logging's icon
      Logging
      Log request and response data using the best transport for your infrastructure
  • Support
  • Community
  • Kong Academy
Get a Demo Start Free Trial
Kong Mesh
2.3.x
  • Home icon
  • Kong Mesh
  • Policies
  • Traffic Route
github-edit-pageEdit this page
report-issueReport an issue
  • Kong Gateway
  • Kong Konnect
  • Kong Mesh
  • Kong AI Gateway
  • Plugin Hub
  • decK
  • Kong Ingress Controller
  • Kong Gateway Operator
  • Insomnia
  • Kuma

  • Docs contribution guidelines
  • dev
  • 2.10.x (latest)
  • 2.9.x
  • 2.8.x
  • 2.7.x (LTS)
  • 2.6.x
  • 2.5.x
  • 2.4.x
  • 2.3.x
  • 2.2.x
  • Introduction
    • About service meshes
    • Overview of Kong Mesh
    • How Kong Mesh works
    • Architecture
    • Stages of software availability
    • Version support policy
    • Mesh requirements
    • Release notes
  • Getting Started
  • Kong Mesh in Production
    • Overview
    • Deployment topologies
      • Overview
      • Standalone deployment
      • Multi-zone deployment
    • Install kumactl
    • Use Kong Mesh
    • Control plane deployment
      • Kong Mesh license
      • Deploy a standalone control plane
      • Deploy a multi-zone global control plane
      • Zone Ingress
      • Zone Egress
      • Configure zone proxy authentication
      • Control plane configuration reference
      • Systemd
    • Create multiple service meshes in a cluster
    • Data plane configuration
      • Data plane proxy
      • Configure the data plane on Kubernetes
      • Configure the data plane on Universal
      • Configure the Kong Mesh CNI
      • Configure transparent proxying
      • IPv6 support
    • Secure your deployment
      • Manage secrets
      • Authentication with the API server
      • Authentication with the data plane proxy
      • Configure data plane proxy membership
      • Secure access across services
      • Kong Mesh RBAC
      • FIPS support
    • Kong Mesh user interface
    • Upgrades and tuning
      • Upgrade Kong Mesh
      • Performance fine-tuning
  • Deploy
    • Explore Kong Mesh with the Kubernetes demo app
    • Explore Kong Mesh with the Universal demo app
  • Explore
    • Gateway
      • Delegated
      • Builtin
    • CLI
      • kumactl
    • Observability
      • Demo setup
      • Control plane metrics
      • Configuring Prometheus
      • Configuring Grafana
      • Configuring Datadog
      • Observability in multi-zone
    • Inspect API
      • Matched policies
      • Affected data plane proxies
      • Envoy proxy configuration
    • Kubernetes Gateway API
      • Installation
      • Gateways
      • TLS termination
      • Customization
      • Multi-mesh
      • Multi-zone
      • GAMMA
      • How it works
  • Networking
    • Service Discovery
    • DNS
      • How it works
      • Installation
      • Configuration
      • Usage
    • Non-mesh traffic
      • Incoming
      • Outgoing
    • Transparent Proxying
  • Monitor & manage
    • Dataplane Health
      • Circuit Breaker Policy
      • Kubernetes and Universal Service Probes
      • Health Check Policy
    • Control Plane Configuration
      • Modifying the configuration
      • Inspecting the configuration
      • Store
  • Policies
    • Introduction
    • General notes about Kong Mesh policies
    • Applying Policies
    • How Kong Mesh chooses the right policy to apply
    • Understanding TargetRef policies
    • Protocol support in Kong Mesh
    • Mutual TLS
      • Usage of "builtin" CA
      • Usage of "provided" CA
      • Permissive mTLS
      • Certificate Rotation
    • Traffic Permissions
      • Usage
      • Access to External Services
    • Traffic Route
      • Usage
    • Traffic Metrics
      • Expose metrics from data plane proxies
      • Expose metrics from applications
      • Override Prometheus settings per data plane proxy
      • Filter Envoy metrics
      • Secure data plane proxy metrics
    • Traffic Trace
      • Add a tracing backend to the mesh
      • Add TrafficTrace resource
    • Traffic Log
      • Add a logging backend
      • Add a TrafficLog resource
      • Logging external services
      • Builtin Gateway support
      • Access Log Format
    • Locality-aware Load Balancing
      • Enabling locality-aware load balancing
    • Fault Injection
      • Usage
      • Matching
    • Health Check
      • Usage
      • Matching
    • Circuit Breaker
      • Usage
      • Matching
      • Builtin Gateway support
      • Non-mesh traffic
    • External Service
      • Usage
      • Builtin Gateway support
    • Retry
      • Usage
      • Matching
      • Builtin Gateway support
    • Timeout
      • Usage
      • Configuration
      • Default general-purpose Timeout policy
      • Matching
      • Builtin Gateway support
      • Inbound timeouts
      • Non-mesh traffic
    • Rate Limit
      • Usage
      • Matching destinations
      • Builtin Gateway support
    • Virtual Outbound
      • Examples
    • MeshGateway
      • TLS Termination
    • MeshGatewayRoute
      • Listener tags
      • Matching
      • Filters
      • Reference
    • MeshGatewayInstance
    • Service Health Probes
      • Kubernetes
      • Universal probes
    • MeshAccessLog (Beta)
      • TargetRef support matrix
      • Configuration
      • Examples
    • MeshCircuitBreaker (Beta)
      • TargetRef support matrix
      • Configuration
      • Examples
    • MeshFaultInjection (Beta)
      • TargetRef support matrix
      • Configuration
      • Examples
    • MeshHealthCheck (Beta)
      • TargetRef support matrix
      • Configuration
      • Examples
    • MeshHTTPRoute (Beta)
      • TargetRef support matrix
      • Configuration
      • Examples
      • Merging
    • MeshProxyPatch (Beta)
      • TargetRef support matrix
      • Configuration
      • Examples
      • Merging
    • MeshRateLimit (Beta)
      • TargetRef support matrix
      • Configuration
      • Examples
    • MeshRetry (Beta)
      • TargetRef support matrix
      • Configuration
      • Examples
    • MeshTCPRoute (Beta)
      • TargetRef support matrix
      • Configuration
      • Examples
      • Route policies with different types targeting the same destination
    • MeshTimeout (Beta)
      • TargetRef support matrix
      • Configuration
      • Examples
    • MeshTrace (Beta)
      • TargetRef support matrix
      • Configuration
      • Examples
    • MeshTrafficPermission (Beta)
      • TargetRef support matrix
      • Configuration
      • Examples
    • MeshLoadBalancingStrategy (Beta)
      • TargetRef support matrix
      • Configuration
      • Examples
    • OPA policy
    • MeshOPA (beta)
    • MeshGlobalRateLimit (beta)
  • Enterprise Features
    • Overview
    • HashiCorp Vault CA
    • Amazon ACM Private CA
    • cert-manager Private CA
    • OPA policy support
    • MeshOPA (beta)
    • Multi-zone authentication
    • FIPS support
    • Certificate Authority rotation
    • Role-Based Access Control
    • UBI Images
    • Windows Support
    • ECS Support
    • Auditing
    • MeshGlobalRateLimit (beta)
  • Reference
    • HTTP API
    • Kubernetes annotations and labels
    • Kuma data collection
    • Control plane configuration reference
    • Envoy proxy template
  • Community
    • Contribute to Kuma
enterprise-switcher-icon Switch to OSS
On this pageOn this page
  • Default TrafficRoute
  • L4 Traffic Split
  • L4 Traffic Rerouting
  • L7 Traffic Split
  • L7 Traffic Modification
  • L7 Traffic Rerouting
  • Load balancer types
You are browsing documentation for an older version. See the latest documentation here.

Traffic Route

Traffic Route is an outbound policy. Dataplanes whose configuration is modified are in the sources matcher.

This policy lets you configure routing rules for the traffic in the mesh. It supports weighted routing and can be used to implement versioning across services or to support deployment strategies such as blue/green or canary.

Note the following:

  • The configuration must specify the data plane proxies for the routing rules.
  • The spec.destinations field supports only kuma.io/service.
  • All available tags are supported for spec.conf.
  • This is an outbound connection policy. Make sure that your data plane proxy configuration includes the appropriate tags.

Kong Mesh also supports locality aware load balancing.

Default TrafficRoute

The control plane creates a default TrafficRoute every time a new Mesh is created. The default TrafficRoute enables the traffic between all the services in the mesh.

Kubernetes
Universal
apiVersion: kuma.io/v1alpha1
kind: TrafficRoute
mesh: default
metadata:
  name: route-all-default
spec:
  sources:
    - match:
        kuma.io/service: '*'
  destinations:
    - match:
        kuma.io/service: '*'
  conf:
    loadBalancer:
      roundRobin: {}
    destination:
      kuma.io/service: '*'
type: TrafficRoute
name: route-all-default
mesh: default
sources:
  - match:
      kuma.io/service: '*'
destinations:
  - match:
      kuma.io/service: '*'
conf:
  loadBalancer:
    roundRobin: {}
  destination:
    kuma.io/service: '*'

Usage

Here is a full example of TrafficRoute policy

Kubernetes
Universal
apiVersion: kuma.io/v1alpha1
kind: TrafficRoute
mesh: default
metadata:
  name: full-example
spec:
  sources:
    - match:
        kuma.io/service: backend_default_svc_80
  destinations:
    - match:
        kuma.io/service: redis_default_svc_6379
  conf:
    http:
    - match:
        method: # one of either "prefix", "exact" or "regex" is allowed
          exact: GET
          regex: "^POST|PUT$"
        path: # one of either "prefix", "exact" or "regex" is allowed
          prefix: /users
          exact: /users/user-1
          regex: "^users$"
        headers:
          some-header: # one of either "prefix", "exact" or "regex" will be allowed
            exact: some-value
            prefix: some-
            regex: "^users$"
      modify: # optional section
        path: # one of "rewritePrefix" or "regex" is allowed
          rewritePrefix: /not-users # rewrites previously matched prefix
          regex: # (example to change the path from "/service/foo/v1/api" to "/v1/api/instance/foo")
            pattern: "^/service/([^/]+)(/.*)$"
            substitution: '\2/instance/\1'
        host: # one of "value" or "fromPath" is allowed
          value: "XYZ"
          fromPath: # (example to extract "envoyproxy.io" host header from "/envoyproxy.io/some/path" path)
            pattern: "^/(.+)/.+$"
            substitution: '\1'
        requestHeaders:
          add:
            - name: x-custom-header
              value: xyz
              append: true # if true then if there is x-custom-header already, it will append xyz to the value 
          remove:
            - name: x-something
        responseHeaders:
          add:
            - name: x-custom-header
              value: xyz
              append: true
          remove:
            - name: x-something
      destination: # one of "destination", "split" is allowed
        kuma.io/service: redis_default_svc_6379
      split:
        - weight: 100
          destination:
            kuma.io/service: redis_default_svc_6379
    destination: # one of "destination", "split" is allowed
      kuma.io/service: redis_default_svc_6379
    split:
      - weight: 100
        destination:
          kuma.io/service: redis_default_svc_6379
    loadBalancer: # one of "roundRobin", "leastRequest", "ringHash", "random", "maglev" is allowed    
      roundRobin: {}
      leastRequest:
        choiceCount: 8
      ringHash:
        hashFunction: "MURMUR_HASH_2"
        minRingSize: 64
        maxRingSize: 1024
      random: {}
      maglev: {}
type: TrafficRoute
name: full-example
mesh: default
sources:
  - match:
      kuma.io/service: backend
destinations:
  - match:
      kuma.io/service: redis
conf:
  http:
    - match:
        method: # one of either "prefix", "exact" or "regex" is allowed
          exact: GET
          regex: "^POST|PUT$"
        path: # one of either "prefix", "exact" or "regex" is allowed
          prefix: /users
          exact: /users/user-1
          regex: "^users$"
        headers:
          some-header: # one of either "prefix", "exact" or "regex" will be allowed
            exact: some-value
            prefix: some-
            regex: "^users$"
      modify: # optional section
        path: # one of "rewritePrefix" or "regex" is allowed
          rewritePrefix: /not-users # rewrites previously matched prefix
          regex: # (example to change the path from "/service/foo/v1/api" to "/v1/api/instance/foo")
            pattern: "^/service/([^/]+)(/.*)$"
            substitution: '\2/instance/\1'
        host: # one of "value" or "fromPath" is allowed
          value: "XYZ"
          fromPath: # (example to extract "envoyproxy.io" host header from "/envoyproxy.io/some/path" path)
            pattern: "^/(.+)/.+$"
            substitution: '\1'
        requestHeaders:
          add:
            - name: x-custom-header
              value: xyz
              append: true # if true then if there is x-custom-header already, it will append xyz to the value 
          remove:
            - name: x-something
        responseHeaders:
          add:
            - name: x-custom-header
              value: xyz
              append: true
          remove:
            - name: x-something
      destination: # one of "destination", "split" is allowed
        kuma.io/service: redis
      split:
        - weight: 100
          destination:
            kuma.io/service: redis
  destination: # one of "destination", "split" is allowed
    kuma.io/service: redis
  split:
    - weight: 100
      destination:
        kuma.io/service: redis
  loadBalancer: # one of "roundRobin", "leastRequest", "ringHash", "random", "maglev" is allowed    
    roundRobin: {}
    leastRequest:
      choiceCount: 8
    ringHash:
      hashFunction: "MURMUR_HASH_2"
      minRingSize: 64
      maxRingSize: 1024
    random: {}
    maglev: {}

Kong Mesh utilizes positive weights in the TrafficRoute policy and not percentages, therefore Kong Mesh does not check if the total adds up to 100. If we want to stop sending traffic to a destination service we change the weight for that service to 0.

L4 Traffic Split

We can use TrafficRoute to split a TCP traffic between services with different tags implementing A/B testing or canary deployments.

Here is an example of a TrafficRoute that splits the traffic over the two different versions of the application. 90% of the connections from backend_default_svc_80 service will be initiated to redis_default_svc_6379 with tag version: 1.0 and 10% of the connections will be initiated to version: 2.0

Kubernetes
Universal
apiVersion: kuma.io/v1alpha1
kind: TrafficRoute
mesh: default
metadata:
  name: split-traffic
spec:
  sources:
    - match:
        kuma.io/service: backend_default_svc_80
  destinations:
    - match:
        kuma.io/service: redis_default_svc_6379
  conf:
    split:
      - weight: 90
        destination:
          kuma.io/service: redis_default_svc_6379
          version: '1.0'
      - weight: 10
        destination:
          kuma.io/service: redis_default_svc_6379
          version: '2.0'
type: TrafficRoute
name: split-traffic
mesh: default
sources:
  - match:
      kuma.io/service: backend
destinations:
  - match:
      kuma.io/service: redis
conf:
  split:
    - weight: 90
      destination:
        kuma.io/service: redis
        version: '1.0'
    - weight: 10
      destination:
        kuma.io/service: redis
        version: '2.0'

L4 Traffic Rerouting

We can use TrafficRoute to fully reroute a TCP traffic to different version of a service or even completely different service.

Here is an example of a TrafficRoute that redirects the traffic to another-redis_default_svc_6379 when backend_default_svc_80 is trying to consume redis_default_svc_6379.

Kubernetes
Universal
apiVersion: kuma.io/v1alpha1
kind: TrafficRoute
mesh: default
metadata:
  name: reroute-traffic
spec:
  sources:
    - match:
        kuma.io/service: backend_default_svc_80
  destinations:
    - match:
        kuma.io/service: redis_default_svc_6379
  conf:
    destination:
      kuma.io/service: another-redis_default_svc_6379
type: TrafficRoute
name: reroute-traffic
mesh: default
sources:
  - match:
      kuma.io/service: backend_default_svc_80
destinations:
  - match:
      kuma.io/service: redis_default_svc_6379
conf:
  destination:
    kuma.io/service: another-redis_default_svc_6379

L7 Traffic Split

We can use TrafficRoute to split an HTTP traffic between services with different tags implementing A/B testing or canary deployments.

Here is an example of a TrafficRoute that splits the traffic from frontend_default_svc_80 to backend_default_svc_80 between versions, but only on endpoints starting with /api. All other endpoints will go to version: 1.0

Kubernetes
Universal
apiVersion: kuma.io/v1alpha1
kind: TrafficRoute
mesh: default
metadata:
  name: api-split
spec:
  sources:
    - match:
        kuma.io/service: frontend_default_svc_80
  destinations:
    - match:
        kuma.io/service: backend_default_svc_80
  conf:
    http:
    - match:
        path:
          prefix: "/api"
      split:
      - weight: 90
        destination:
          kuma.io/service: backend_default_svc_80
          version: '1.0'
      - weight: 10
        destination:
          kuma.io/service: backend_default_svc_80
          version: '2.0'
    destination: # default rule is applied when endpoint does not match any rules in http section
      kuma.io/service: backend_default_svc_80
      version: '1.0'
type: TrafficRoute
name: api-split
mesh: default
sources:
  - match:
      kuma.io/service: frontend_default_svc_80
destinations:
  - match:
      kuma.io/service: backend_default_svc_80
conf:
  http:
    - match:
        path:
          prefix: "/api"
      split:
        - weight: 90
          destination:
            kuma.io/service: backend_default_svc_80
            version: '1.0'
        - weight: 10
          destination:
            kuma.io/service: backend_default_svc_80
            version: '2.0'
  destination: # default rule is applied when endpoint does not match any rules in http section
    kuma.io/service: backend_default_svc_80
    version: '1.0'

In order to use L7 Traffic Split, we need to mark the destination service with kuma.io/protocol: http.

L7 Traffic Modification

We can use TrafficRoute to modify outgoing requests, by setting new path or changing request and response headers.

Here is an example of a TrafficRoute that adds x-custom-header with value xyz when frontend_default_svc_80 tries to consume backend_default_svc_80.

Kubernetes
Universal
apiVersion: kuma.io/v1alpha1
kind: TrafficRoute
mesh: default
metadata:
  name: add-header
spec:
  sources:
    - match:
        kuma.io/service: frontend_default_svc_80
  destinations:
    - match:
        kuma.io/service: backend_default_svc_80
  conf:
    http:
    - match:
        path:
          prefix: "/"
      modify:
        requestHeader:
          add:
            - name: x-custom-header
              value: xyz
      destination:
        kuma.io/service: backend_default_svc_80
    destination:
      kuma.io/service: backend_default_svc_80
type: TrafficRoute
name: add-header
mesh: default
sources:
  - match:
      kuma.io/service: frontend_default_svc_80
destinations:
  - match:
      kuma.io/service: backend_default_svc_80
conf:
  http:
    - match:
        path:
          prefix: "/"
      modify:
        requestHeader:
          add:
            - name: x-custom-header
              value: xyz
      destination:
        kuma.io/service: backend_default_svc_80
  destination:
    kuma.io/service: backend_default_svc_80

In order to use L7 Traffic Modification, we need to mark the destination service with kuma.io/protocol: http.

L7 Traffic Rerouting

We can use TrafficRoute to modify outgoing requests, by setting new path or changing request and response headers.

Here is an example of a TrafficRoute that redirect traffic to offers_default_svc_80 when frontend_default_svc_80 is trying to consume backend_default_svc_80 on /offers endpoint.

Kubernetes
Universal
apiVersion: kuma.io/v1alpha1
kind: TrafficRoute
mesh: default
metadata:
  name: http-reroute
spec:
  sources:
    - match:
        kuma.io/service: frontend_default_svc_80
  destinations:
    - match:
        kuma.io/service: backend_default_svc_80
  conf:
    http:
    - match:
        path:
          prefix: "/offers"
      destination:
        kuma.io/service: offers_default_svc_80
    destination:
      kuma.io/service: backend_default_svc_80
type: TrafficRoute
name: http-reroute
mesh: default
sources:
  - match:
      kuma.io/service: frontend_default_svc_80
destinations:
  - match:
      kuma.io/service: backend_default_svc_80
conf:
  http:
    - match:
        path:
          prefix: "/offers"
      destination:
        kuma.io/service: offers_default_svc_80
  destination:
    kuma.io/service: backend_default_svc_80

In order to use L7 Traffic Rerouting, we need to mark the destination service with kuma.io/protocol: http.

Load balancer types

There are different load balancing algorithms that can be used to determine how traffic is routed to the destinations. By default TrafficRoute uses the roundRobin load balancer, but more options are available:

  • roundRobin is a simple algorithm in which each available upstream host is selected in round robin order.

    Example:

    loadBalancer:
      roundRobin: {}
    
  • leastRequest uses different algorithms depending on whether the hosts have the same or different weights. It has a single configuration field choiceCount, which denotes the number of random healthy hosts from which the host with the fewer active requests will be chosen.

    Example:

    loadBalancer:
      leastRequest:
        choiceCount: 8
    
  • ringHash implements consistent hashing to the upstream hosts. It has the following fields:
    • hashFunction the hash function used to hash the hosts onto the ketama ring. Can be XX_HASH or MURMUR_HASH_2.
    • minRingSize minimum hash ring size.
    • maxRingSize maximum hash ring size.

    Example:

    loadBalancer:
      ringHash:
        hashFunction: "MURMUR_HASH_2"
        minRingSize: 64
        maxRingSize: 1024
    
  • random selects a random available host.

    Example:

    loadBalancer:
      random: {}
    
  • maglev implements consistent hashing to upstream hosts

    Example:

    loadBalancer:
      maglev: {}
    

All options

Thank you for your feedback.
Was this page useful?
Too much on your plate? close cta icon
More features, less infrastructure with Kong Konnect. 1M requests per month for free.
Try it for Free
  • Kong
    Powering the API world

    Increase developer productivity, security, and performance at scale with the unified platform for API management, service mesh, and ingress controller.

    • Products
      • Kong Konnect
      • Kong Gateway Enterprise
      • Kong Gateway
      • Kong Mesh
      • Kong Ingress Controller
      • Kong Insomnia
      • Product Updates
      • Get Started
    • Documentation
      • Kong Konnect Docs
      • Kong Gateway Docs
      • Kong Mesh Docs
      • Kong Insomnia Docs
      • Kong Konnect Plugin Hub
    • Open Source
      • Kong Gateway
      • Kuma
      • Insomnia
      • Kong Community
    • Company
      • About Kong
      • Customers
      • Careers
      • Press
      • Events
      • Contact
  • Terms• Privacy• Trust and Compliance
© Kong Inc. 2025