You are browsing documentation for an outdated plugin version.
Basic configuration examples
The following examples provide some typical configurations for enabling
the ai-request-transformer
plugin on a
service.
Make the following request:
curl -X POST http://localhost:8001/services/{serviceName|Id}/plugins \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-request-transformer",
"config": {
"prompt": "Mask any credit card numbers in my JSON message. Reply with only the JSON result.",
"transformation_extract_pattern": "\\\\{((.|\\n)*)\\\\}",
"llm": {
"route_type": "llm/v1/chat",
"auth": {
"header_name": "Authorization",
"header_value": "Bearer <OPENAI_API_TOKEN>"
},
"logging": {
"log_statistics": true,
"log_payloads": false
},
"model": {
"provider": "openai",
"name": "gpt-4",
"options": {
"max_tokens": 1024,
"temperature": 1.0
}
}
}
}
}
'
Replace SERVICE_NAME|ID
with the id
or name
of the service that this plugin configuration will target.
Make the following request, substituting your own access token, region, control plane ID, and service ID:
curl -X POST \
https://{us|eu}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/services/{serviceId}/plugins \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer TOKEN" \
--data '{"name":"ai-request-transformer","config":{"prompt":"Mask any credit card numbers in my JSON message. Reply with only the JSON result.","transformation_extract_pattern":"\\\\{((.|\\n)*)\\\\}","llm":{"route_type":"llm/v1/chat","auth":{"header_name":"Authorization","header_value":"Bearer <OPENAI_API_TOKEN>"},"logging":{"log_statistics":true,"log_payloads":false},"model":{"provider":"openai","name":"gpt-4","options":{"max_tokens":1024,"temperature":1.0}}}}}'
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
First, create a KongPlugin resource:
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
name: ai-request-transformer-example
plugin: ai-request-transformer
config:
prompt: Mask any credit card numbers in my JSON message. Reply with only the JSON
result.
transformation_extract_pattern: "\\\\{((.|\\n)*)\\\\}"
llm:
route_type: llm/v1/chat
auth:
header_name: Authorization
header_value: Bearer <OPENAI_API_TOKEN>
logging:
log_statistics: true
log_payloads: false
model:
provider: openai
name: gpt-4
options:
max_tokens: 1024
temperature: 1.0
" | kubectl apply -f -
Next, apply the KongPlugin
resource to an ingress by annotating the service
as follows:
kubectl annotate service SERVICE_NAME konghq.com/plugins=ai-request-transformer-example
Replace SERVICE_NAME
with the name of the service that this plugin configuration will target.
You can see your available ingresses by running kubectl get service
.
Note: The KongPlugin resource only needs to be defined once and can be applied to any service, consumer, or route in the namespace. If you want the plugin to be available cluster-wide, create the resource as aKongClusterPlugin
instead ofKongPlugin
.
Add this section to your declarative configuration file:
plugins:
- name: ai-request-transformer
service: SERVICE_NAME|ID
config:
prompt: Mask any credit card numbers in my JSON message. Reply with only the JSON
result.
transformation_extract_pattern: "\\\\{((.|\\n)*)\\\\}"
llm:
route_type: llm/v1/chat
auth:
header_name: Authorization
header_value: Bearer <OPENAI_API_TOKEN>
logging:
log_statistics: true
log_payloads: false
model:
provider: openai
name: gpt-4
options:
max_tokens: 1024
temperature: 1.0
Replace SERVICE_NAME|ID
with the id
or name
of the service that this plugin configuration will target.
Prerequisite: Configure your Personal Access Token
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "kpat_YOUR_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_request_transformer" "my_ai_request_transformer" {
enabled = true
config = {
prompt = "Mask any credit card numbers in my JSON message. Reply with only the JSON result."
transformation_extract_pattern = "\\{((.|\n)*)\\}"
llm = {
route_type = "llm/v1/chat"
auth = {
header_name = "Authorization"
header_value = "Bearer <OPENAI_API_TOKEN>"
}
logging = {
log_statistics = true
log_payloads = false
}
model = {
provider = "openai"
name = "gpt-4"
options = {
max_tokens = 1024
temperature = 1.0
}
}
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
service = {
id = konnect_gateway_service.my_service.id
}
}
The following examples provide some typical configurations for enabling
the ai-request-transformer
plugin on a
route.
Make the following request:
curl -X POST http://localhost:8001/routes/{routeName|Id}/plugins \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-request-transformer",
"config": {
"prompt": "Mask any credit card numbers in my JSON message. Reply with only the JSON result.",
"transformation_extract_pattern": "\\\\{((.|\\n)*)\\\\}",
"llm": {
"route_type": "llm/v1/chat",
"auth": {
"header_name": "Authorization",
"header_value": "Bearer <OPENAI_API_TOKEN>"
},
"logging": {
"log_statistics": true,
"log_payloads": false
},
"model": {
"provider": "openai",
"name": "gpt-4",
"options": {
"max_tokens": 1024,
"temperature": 1.0
}
}
}
}
}
'
Replace ROUTE_NAME|ID
with the id
or name
of the route that this plugin configuration will target.
Make the following request, substituting your own access token, region, control plane ID, and route ID:
curl -X POST \
https://{us|eu}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/routes/{routeId}/plugins \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer TOKEN" \
--data '{"name":"ai-request-transformer","config":{"prompt":"Mask any credit card numbers in my JSON message. Reply with only the JSON result.","transformation_extract_pattern":"\\\\{((.|\\n)*)\\\\}","llm":{"route_type":"llm/v1/chat","auth":{"header_name":"Authorization","header_value":"Bearer <OPENAI_API_TOKEN>"},"logging":{"log_statistics":true,"log_payloads":false},"model":{"provider":"openai","name":"gpt-4","options":{"max_tokens":1024,"temperature":1.0}}}}}'
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
First, create a KongPlugin resource:
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
name: ai-request-transformer-example
plugin: ai-request-transformer
config:
prompt: Mask any credit card numbers in my JSON message. Reply with only the JSON
result.
transformation_extract_pattern: "\\\\{((.|\\n)*)\\\\}"
llm:
route_type: llm/v1/chat
auth:
header_name: Authorization
header_value: Bearer <OPENAI_API_TOKEN>
logging:
log_statistics: true
log_payloads: false
model:
provider: openai
name: gpt-4
options:
max_tokens: 1024
temperature: 1.0
" | kubectl apply -f -
Next, apply the KongPlugin
resource to an ingress by annotating the ingress
as follows:
kubectl annotate ingress INGRESS_NAME konghq.com/plugins=ai-request-transformer-example
Replace INGRESS_NAME
with the name of the ingress that this plugin configuration will target.
You can see your available ingresses by running kubectl get ingress
.
Note: The KongPlugin resource only needs to be defined once and can be applied to any service, consumer, or route in the namespace. If you want the plugin to be available cluster-wide, create the resource as aKongClusterPlugin
instead ofKongPlugin
.
Add this section to your declarative configuration file:
plugins:
- name: ai-request-transformer
route: ROUTE_NAME|ID
config:
prompt: Mask any credit card numbers in my JSON message. Reply with only the JSON
result.
transformation_extract_pattern: "\\\\{((.|\\n)*)\\\\}"
llm:
route_type: llm/v1/chat
auth:
header_name: Authorization
header_value: Bearer <OPENAI_API_TOKEN>
logging:
log_statistics: true
log_payloads: false
model:
provider: openai
name: gpt-4
options:
max_tokens: 1024
temperature: 1.0
Replace ROUTE_NAME|ID
with the id
or name
of the route that this plugin configuration will target.
Prerequisite: Configure your Personal Access Token
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "kpat_YOUR_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_request_transformer" "my_ai_request_transformer" {
enabled = true
config = {
prompt = "Mask any credit card numbers in my JSON message. Reply with only the JSON result."
transformation_extract_pattern = "\\{((.|\n)*)\\}"
llm = {
route_type = "llm/v1/chat"
auth = {
header_name = "Authorization"
header_value = "Bearer <OPENAI_API_TOKEN>"
}
logging = {
log_statistics = true
log_payloads = false
}
model = {
provider = "openai"
name = "gpt-4"
options = {
max_tokens = 1024
temperature = 1.0
}
}
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
route = {
id = konnect_gateway_route.my_route.id
}
}
The following examples provide some typical configurations for enabling
the ai-request-transformer
plugin on a
consumer group.
Make the following request:
curl -X POST http://localhost:8001/consumer_groups/{consumerGroupName|Id}/plugins \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-request-transformer",
"config": {
"prompt": "Mask any credit card numbers in my JSON message. Reply with only the JSON result.",
"transformation_extract_pattern": "\\\\{((.|\\n)*)\\\\}",
"llm": {
"route_type": "llm/v1/chat",
"auth": {
"header_name": "Authorization",
"header_value": "Bearer <OPENAI_API_TOKEN>"
},
"logging": {
"log_statistics": true,
"log_payloads": false
},
"model": {
"provider": "openai",
"name": "gpt-4",
"options": {
"max_tokens": 1024,
"temperature": 1.0
}
}
}
}
}
'
Replace CONSUMER_GROUP_NAME|ID
with the id
or name
of the consumer group that this plugin configuration will target.
Make the following request, substituting your own access token, region, control plane ID, and consumer group ID:
curl -X POST \
https://{us|eu}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/consumer_groups/{consumerGroupId}/plugins \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer TOKEN" \
--data '{"name":"ai-request-transformer","config":{"prompt":"Mask any credit card numbers in my JSON message. Reply with only the JSON result.","transformation_extract_pattern":"\\\\{((.|\\n)*)\\\\}","llm":{"route_type":"llm/v1/chat","auth":{"header_name":"Authorization","header_value":"Bearer <OPENAI_API_TOKEN>"},"logging":{"log_statistics":true,"log_payloads":false},"model":{"provider":"openai","name":"gpt-4","options":{"max_tokens":1024,"temperature":1.0}}}}}'
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
First, create a KongPlugin resource:
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
name: ai-request-transformer-example
plugin: ai-request-transformer
config:
prompt: Mask any credit card numbers in my JSON message. Reply with only the JSON
result.
transformation_extract_pattern: "\\\\{((.|\\n)*)\\\\}"
llm:
route_type: llm/v1/chat
auth:
header_name: Authorization
header_value: Bearer <OPENAI_API_TOKEN>
logging:
log_statistics: true
log_payloads: false
model:
provider: openai
name: gpt-4
options:
max_tokens: 1024
temperature: 1.0
" | kubectl apply -f -
Next, apply the KongPlugin
resource to an ingress by annotating the KongConsumerGroup
object as follows:
kubectl annotate KongConsumerGroup CONSUMER_GROUP_NAME konghq.com/plugins=ai-request-transformer-example
Replace CONSUMER_GROUP_NAME
with the name of the consumer group that this plugin configuration will target.
You can see your available consumer groups by running kubectl get KongConsumerGroup
.
Note: The KongPlugin resource only needs to be defined once and can be applied to any service, consumer, consumer group, or route in the namespace. If you want the plugin to be available cluster-wide, create the resource as aKongClusterPlugin
instead ofKongPlugin
.
Add this section to your declarative configuration file:
plugins:
- name: ai-request-transformer
consumer_group: CONSUMER_GROUP_NAME|ID
config:
prompt: Mask any credit card numbers in my JSON message. Reply with only the JSON
result.
transformation_extract_pattern: "\\\\{((.|\\n)*)\\\\}"
llm:
route_type: llm/v1/chat
auth:
header_name: Authorization
header_value: Bearer <OPENAI_API_TOKEN>
logging:
log_statistics: true
log_payloads: false
model:
provider: openai
name: gpt-4
options:
max_tokens: 1024
temperature: 1.0
Replace CONSUMER_GROUP_NAME|ID
with the id
or name
of the consumer group that this plugin configuration will target.
Prerequisite: Configure your Personal Access Token
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "kpat_YOUR_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_request_transformer" "my_ai_request_transformer" {
enabled = true
config = {
prompt = "Mask any credit card numbers in my JSON message. Reply with only the JSON result."
transformation_extract_pattern = "\\{((.|\n)*)\\}"
llm = {
route_type = "llm/v1/chat"
auth = {
header_name = "Authorization"
header_value = "Bearer <OPENAI_API_TOKEN>"
}
logging = {
log_statistics = true
log_payloads = false
}
model = {
provider = "openai"
name = "gpt-4"
options = {
max_tokens = 1024
temperature = 1.0
}
}
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
consumer_group = {
id = konnect_gateway_consumer_group.my_consumer_group.id
}
}
A plugin which is not associated to any service, route, consumer, or consumer group is considered global, and will be run on every request.
- In self-managed Kong Gateway Enterprise, the plugin applies to every entity in a given workspace.
- In self-managed Kong Gateway (OSS), the plugin applies to your entire environment.
- In Konnect, the plugin applies to every entity in a given control plane.
Read the Plugin Reference and the Plugin Precedence sections for more information.
The following examples provide some typical configurations for enabling
the AI Request Transformer
plugin globally.
Make the following request:
curl -X POST http://localhost:8001/plugins/ \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-request-transformer",
"config": {
"prompt": "Mask any credit card numbers in my JSON message. Reply with only the JSON result.",
"transformation_extract_pattern": "\\\\{((.|\\n)*)\\\\}",
"llm": {
"route_type": "llm/v1/chat",
"auth": {
"header_name": "Authorization",
"header_value": "Bearer <OPENAI_API_TOKEN>"
},
"logging": {
"log_statistics": true,
"log_payloads": false
},
"model": {
"provider": "openai",
"name": "gpt-4",
"options": {
"max_tokens": 1024,
"temperature": 1.0
}
}
}
}
}
'
Make the following request, substituting your own access token, region, and control plane ID:
curl -X POST \
https://{us|eu}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/plugins/ \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer TOKEN" \
--data '{"name":"ai-request-transformer","config":{"prompt":"Mask any credit card numbers in my JSON message. Reply with only the JSON result.","transformation_extract_pattern":"\\\\{((.|\\n)*)\\\\}","llm":{"route_type":"llm/v1/chat","auth":{"header_name":"Authorization","header_value":"Bearer <OPENAI_API_TOKEN>"},"logging":{"log_statistics":true,"log_payloads":false},"model":{"provider":"openai","name":"gpt-4","options":{"max_tokens":1024,"temperature":1.0}}}}}'
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
Create a KongClusterPlugin resource and label it as global:
apiVersion: configuration.konghq.com/v1
kind: KongClusterPlugin
metadata:
name: <global-ai-request-transformer>
annotations:
kubernetes.io/ingress.class: kong
labels:
global: "true"
config:
prompt: Mask any credit card numbers in my JSON message. Reply with only the JSON
result.
transformation_extract_pattern: "\\\\{((.|\\n)*)\\\\}"
llm:
route_type: llm/v1/chat
auth:
header_name: Authorization
header_value: Bearer <OPENAI_API_TOKEN>
logging:
log_statistics: true
log_payloads: false
model:
provider: openai
name: gpt-4
options:
max_tokens: 1024
temperature: 1.0
plugin: ai-request-transformer
Add a plugins
entry in the declarative configuration file:
plugins:
- name: ai-request-transformer
config:
prompt: Mask any credit card numbers in my JSON message. Reply with only the JSON
result.
transformation_extract_pattern: "\\\\{((.|\\n)*)\\\\}"
llm:
route_type: llm/v1/chat
auth:
header_name: Authorization
header_value: Bearer <OPENAI_API_TOKEN>
logging:
log_statistics: true
log_payloads: false
model:
provider: openai
name: gpt-4
options:
max_tokens: 1024
temperature: 1.0
Prerequisite: Configure your Personal Access Token
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "kpat_YOUR_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_request_transformer" "my_ai_request_transformer" {
enabled = true
config = {
prompt = "Mask any credit card numbers in my JSON message. Reply with only the JSON result."
transformation_extract_pattern = "\\{((.|\n)*)\\}"
llm = {
route_type = "llm/v1/chat"
auth = {
header_name = "Authorization"
header_value = "Bearer <OPENAI_API_TOKEN>"
}
logging = {
log_statistics = true
log_payloads = false
}
model = {
provider = "openai"
name = "gpt-4"
options = {
max_tokens = 1024
temperature = 1.0
}
}
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
}